Live Attenuated Francisella novicida Vaccine Protects against Francisella tularensis Pulmonary Challenge in Rats and Non-human Primates
نویسندگان
چکیده
Francisella tularensis causes the disease tularemia. Human pulmonary exposure to the most virulent form, F. tularensis subsp. tularensis (Ftt), leads to high morbidity and mortality, resulting in this bacterium being classified as a potential biothreat agent. However, a closely-related species, F. novicida, is avirulent in healthy humans. No tularemia vaccine is currently approved for human use. We demonstrate that a single dose vaccine of a live attenuated F. novicida strain (Fn iglD) protects against subsequent pulmonary challenge with Ftt using two different animal models, Fischer 344 rats and cynomolgus macaques (NHP). The Fn iglD vaccine showed protective efficacy in rats, as did a Ftt iglD vaccine, suggesting no disadvantage to utilizing the low human virulent Francisella species to induce protective immunity. Comparison of specific antibody profiles in vaccinated rat and NHP sera by proteome array identified a core set of immunodominant antigens in vaccinated animals. This is the first report of a defined live attenuated vaccine that demonstrates efficacy against pulmonary tularemia in a NHP, and indicates that the low human virulence F. novicida functions as an effective tularemia vaccine platform.
منابع مشابه
The Fischer 344 Rat Reflects Human Susceptibility to Francisella Pulmonary Challenge and Provides a New Platform for Virulence and Protection Studies
BACKGROUND The pathogenesis of Francisella tularensis, the causative agent of tularemia, has been primarily characterized in mice. However, the high degree of sensitivity of mice to bacterial challenge, especially with the human virulent strains of F. tularensis, limits this animal model for screening of defined attenuated vaccine candidates for protection studies. METHODS AND FINDINGS We ana...
متن کاملVaccination with the Live Attenuated Francisella novicida Mutant FTN0109 Protects against Pulmonary Tularemia
Francisella tularensis is considered a potential bioterrorism agent due to its low infectious dose, high mortality rate, and ability to be spread via the aerosol route. We characterized the F. tularensis subspecies novicida mutant strain FTN0109 as a potential vaccine candidate against tularemia. This strain, which lacks an outer membrane lipoprotein, is attenuated in vitro and in vivo, as it e...
متن کاملMucosal Immunization with Live Attenuated Francisella novicida U112ΔiglB Protects against Pulmonary F. tularensis SCHU S4 in the Fischer 344 Rat Model
The need for an efficacious vaccine against Francisella tularensis is a consequence of its low infectious dose and high mortality rate if left untreated. This study sought to characterize a live attenuated subspecies novicida-based vaccine strain (U112ΔiglB) in an established second rodent model of pulmonary tularemia, namely the Fischer 344 rat using two distinct routes of vaccination (intratr...
متن کاملAttenuated Francisella novicida transposon mutants protect mice against wild-type challenge.
Francisella tularensis is the bacterial pathogen that causes tularemia in humans and a number of animals. To date, there is no approved vaccine for this widespread and life-threatening disease. The goal of this study was to identify F. tularensis mutants that can be used in the development of a live attenuated vaccine. We screened F. novicida transposon mutants to identify mutants that exhibite...
متن کاملPerforin- and granzyme-mediated cytotoxic effector functions are essential for protection against Francisella tularensis following vaccination by the defined F. tularensis subsp. novicida ΔfopC vaccine strain.
A licensed vaccine against Francisella tularensis is currently not available. Two Francisella tularensis subsp. novicida (herein referred to by its earlier name, Francisella novicida) attenuated strains, the ΔiglB and ΔfopC strains, have previously been evaluated as potential vaccine candidates against pneumonic tularemia in experimental animals. F. novicida ΔiglB, a Francisella pathogenicity i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014